Kruskal Algorithm of Greedy Algorithm in C/C++/Java/Python

It is an Algorithm that is used to generate a minimum spanning tree for a given graph.A Spanning tree is a subset, connected graph G, and all the edges are connected in such a way that we can traverse to any edge from a particular edge with or without intermediates. So, if there are n vertices in a connected graph then the no. of edges that a spanning tree may have is n-1.

Kruskal’s algorithm sorts all the edges in increasing order of their edge weights and keeps adding nodes to the tree only if the chosen edge does not form any cycle.

  • Step 1: Sort all edges in increasing order of their edge weights.
  • Step 2: Pick the smallest edge.
  • Step 3: Check if the new edge creates a cycle or loop in a spanning tree.
  • Step 4: If it doesn’t form the cycle, then include that edge in MST. Otherwise, discard it.
  • Step 5: Repeat from step 2 until it includes |V| – 1 edge in MST.

In C++

#include <bits/stdc++.h>
using namespace std;
// DSU data structure
// path compression + rank by union

class DSU {
	int* parent;
	int* rank;

public:
	DSU(int n)
	{
		parent = new int[n];
		rank = new int[n];

		for (int i = 0; i < n; i++) {
			parent[i] = -1;
			rank[i] = 1;
		}
	}

	// Find function
	int find(int i)
	{
		if (parent[i] == -1)
			return i;

		return parent[i] = find(parent[i]);
	}
	// union function
	void unite(int x, int y)
	{
		int s1 = find(x);
		int s2 = find(y);

		if (s1 != s2) {
			if (rank[s1] < rank[s2]) {
				parent[s1] = s2;
				rank[s2] += rank[s1];
			}
			else {
				parent[s2] = s1;
				rank[s1] += rank[s2];
			}
		}
	}
};

class Graph {
	vector<vector<int> > edgelist;
	int V;

public:
	Graph(int V) { this->V = V; }

	void addEdge(int x, int y, int w)
	{
		edgelist.push_back({ w, x, y });
	}

	void kruskals_mst()
	{
		// 1. Sort all edges
		sort(edgelist.begin(), edgelist.end());

		// Initialize the DSU
		DSU s(V);
		int ans = 0;
		cout << "Following are the edges in the "
				"constructed MST"
			<< endl;
		for (auto edge : edgelist) {
			int w = edge[0];
			int x = edge[1];
			int y = edge[2];

			// take that edge in MST if it does form a cycle
			if (s.find(x) != s.find(y)) {
				s.unite(x, y);
				ans += w;
				cout << x << " -- " << y << " == " << w
					<< endl;
			}
		}
		cout << "Minimum Cost Spanning Tree: " << ans;
	}
};
int main()
{
	/* Let us create following weighted graph
				10
			0--------1
			| \	 |
			6| 5\ |15
			|	 \ |
			2--------3
				4	 */
	Graph g(4);
	g.addEdge(0, 1, 10);
	g.addEdge(1, 3, 15);
	g.addEdge(2, 3, 4);
	g.addEdge(2, 0, 6);
	g.addEdge(0, 3, 5);

	// int n, m;
	// cin >> n >> m;

	// Graph g(n);
	// for (int i = 0; i < m; i++)
	// {
	//	 int x, y, w;
	//	 cin >> x >> y >> w;
	//	 g.addEdge(x, y, w);
	// }

	g.kruskals_mst();
	return 0;
}

The  output:

Following are the edges in the constructed MST

2 — 3 == 4

0 — 3 == 5

0 — 1 == 10

Minimum Cost Spanning Tree: 19

LeetCode vs HackerRank vs HackerEarth

In C

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
//structure that denotes a weighted edge
struct Edge {
int source, destination, weight;
};
//structure that denotes a weighted, undirected and connected graph
struct Graph {
int Node, E;
struct Edge* edge;
};
//allocates memory for storing graph with V vertices and E edges
struct Graph* GenerateGraph(int Node, int E)
{
struct Graph* graph = (struct Graph*)(malloc(sizeof(struct Graph)));
graph->Node = Node;
graph->E = E;
graph->edge = (struct Edge*)malloc(sizeof( struct Edge));
return graph;
}
//subset for Union-Find
struct tree_maintainance_set {
int parent;
int rank;
};
//finds the set of chosen element i using path compression
int find_DisjointSet(struct tree_maintainance_set subsets[], int i)
{
     //find root and make root as parent of i
if (subsets[i].parent != i)
subsets[i].parent
= find_DisjointSet(subsets, subsets[i].parent);
return subsets[i].parent;
}
//Creates the Union of two sets
void Union_DisjointSet(struct tree_maintainance_set subsets[], int x, int y)
{
int xroot = find_DisjointSet(subsets, x);
int yroot = find_DisjointSet(subsets, y);
  //connecting tree with lowest rank to the tree with highest rank
if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;
  //if ranks are same, arbitrarily increase the rank of one node
else
{
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}
//function to compare edges using qsort() in C programming
int myComp(const void* a, const void* b)
{
struct Edge* a1 = (struct Edge*)a;
struct Edge* b1 = (struct Edge*)b;
return a1->weight > b1->weight;
}
//function to construct MST using Kruskal’s approach
void KruskalMST(struct Graph* graph)
{
int Node = graph->Node;
struct Edge
result[Node]; 
int e = 0; 
int i = 0; 
     //sorting all edges
qsort(graph->edge, graph->E, sizeof(graph->edge[0]),
myComp);
     //memory allocation for V subsets
struct tree_maintainance_set* subsets
= (struct tree_maintainance_set*)malloc(Node * sizeof(struct tree_maintainance_set));
     //V subsets containing only one element
for (int v = 0; v < Node; ++v) {
subsets[v].parent = v;
subsets[v].rank = 0;
}
     //Edge traversal limit: V-1
while (e < Node - 1 && i < graph->E) {
struct Edge next_edge = graph->edge[i++];
int x = find_DisjointSet(subsets, next_edge.source);
int y = find_DisjointSet(subsets, next_edge.destination);
if (x != y) {
result[e++] = next_edge;
Union_DisjointSet(subsets, x, y);
}
}
     //printing MST
Printf
(
"Edges created in MST are as below: \n");
}
int main()
{
int Node = 4; 
int E = 6; 
struct Graph* graph = GenerateGraph(Node, E);
     //Creating graph with manual value insertion
// add edge 0-1
graph->edge[0].source = 0;
graph->edge[0].destination = 1;
graph->edge[0].weight = 2;
}
// add edge 0-2
graph->edge[1].source = 0;
graph->edge[1].destination = 2;
graph->edge[1].weight = 4;
// add edge 0-3
graph->edge[2].source = 0;
graph->edge[2].destination = 3;
graph->edge[2].weight = 4;
// add edge 1-3
graph->edge[3].source = 1;
graph->edge[3].destination = 3;
graph->edge[3].weight = 3;
// add edge 2-3
graph->edge[4].source = 2;
graph->edge[4].destination = 3;
graph->edge[4].weight = 1;
// add edge 1-2
graph->edge[5].source = 1;
graph->edge[5].destination = 2;
graph->edge[5].weight = 2;
KruskalMST(graph);
return 0;
}

The output:

2 ->> 3 ==1

0 ->> 1 ==2

2 ->> 1==2

In Java

// Java program for Kruskal's algorithm to
// find Minimum Spanning Tree of a given
//connected, undirected and weighted graph
import java.util.*;
import java.lang.*;
import java.io.*;

class Graph {
	// A class to represent a graph edge
	class Edge implements Comparable<Edge>
	{
		int src, dest, weight;

		// Comparator function used for
		// sorting edgesbased on their weight
		public int compareTo(Edge compareEdge)
		{
			return this.weight - compareEdge.weight;
		}
	};

	// A class to represent a subset for
	// union-find
	class subset
	{
		int parent, rank;
	};

	int V, E; // V-> no. of vertices & E->no.of edges
	Edge edge[]; // collection of all edges

	// Creates a graph with V vertices and E edges
	Graph(int v, int e)
	{
		V = v;
		E = e;
		edge = new Edge[E];
		for (int i = 0; i < e; ++i)
			edge[i] = new Edge();
	}

	// A utility function to find set of an
	// element i (uses path compression technique)
	int find(subset subsets[], int i)
	{
		// find root and make root as parent of i
		// (path compression)
		if (subsets[i].parent != i)
			subsets[i].parent
				= find(subsets, subsets[i].parent);

		return subsets[i].parent;
	}

	// A function that does union of two sets
	// of x and y (uses union by rank)
	void Union(subset subsets[], int x, int y)
	{
		int xroot = find(subsets, x);
		int yroot = find(subsets, y);

		// Attach smaller rank tree under root
		// of high rank tree (Union by Rank)
		if (subsets[xroot].rank
			< subsets[yroot].rank)
			subsets[xroot].parent = yroot;
		else if (subsets[xroot].rank
				> subsets[yroot].rank)
			subsets[yroot].parent = xroot;

		// If ranks are same, then make one as
		// root and increment its rank by one
		else {
			subsets[yroot].parent = xroot;
			subsets[xroot].rank++;
		}
	}

	// The main function to construct MST using Kruskal's
	// algorithm
	void KruskalMST()
	{
		// This will store the resultant MST
		Edge result[] = new Edge[V];
		
		// An index variable, used for result[]
		int e = 0;
		
		// An index variable, used for sorted edges
		int i = 0;
		for (i = 0; i < V; ++i)
			result[i] = new Edge();

		// Step 1: Sort all the edges in non-decreasing
		// order of their weight. If we are not allowed to
		// change the given graph, we can create a copy of
		// array of edges
		Arrays.sort(edge);

		// Allocate memory for creating V subsets
		subset subsets[] = new subset[V];
		for (i = 0; i < V; ++i)
			subsets[i] = new subset();

		// Create V subsets with single elements
		for (int v = 0; v < V; ++v)
		{
			subsets[v].parent = v;
			subsets[v].rank = 0;
		}

		i = 0; // Index used to pick next edge

		// Number of edges to be taken is equal to V-1
		while (e < V - 1)
		{
			// Step 2: Pick the smallest edge. And increment
			// the index for next iteration
			Edge next_edge = edge[i++];

			int x = find(subsets, next_edge.src);
			int y = find(subsets, next_edge.dest);

			// If including this edge doesn't cause cycle,
			// include it in result and increment the index
			// of result for next edge
			if (x != y) {
				result[e++] = next_edge;
				Union(subsets, x, y);
			}
			// Else discard the next_edge
		}

		// print the contents of result[] to display
		// the built MST
		System.out.println("Following are the edges in "
						+ "the constructed MST");
		int minimumCost = 0;
		for (i = 0; i < e; ++i)
		{
			System.out.println(result[i].src + " -- "
							+ result[i].dest
							+ " == " + result[i].weight);
			minimumCost += result[i].weight;
		}
		System.out.println("Minimum Cost Spanning Tree "
						+ minimumCost);
	}

	// Driver Code
	public static void main(String[] args)
	{

		/* Let us create following weighted graph
				10
			0--------1
			| \	 |
		6| 5\ |15
			|	 \ |
			2--------3
				4	 */
		int V = 4; // Number of vertices in graph
		int E = 5; // Number of edges in graph
		Graph graph = new Graph(V, E);

		// add edge 0-1
		graph.edge[0].src = 0;
		graph.edge[0].dest = 1;
		graph.edge[0].weight = 10;

		// add edge 0-2
		graph.edge[1].src = 0;
		graph.edge[1].dest = 2;
		graph.edge[1].weight = 6;

		// add edge 0-3
		graph.edge[2].src = 0;
		graph.edge[2].dest = 3;
		graph.edge[2].weight = 5;

		// add edge 1-3
		graph.edge[3].src = 1;
		graph.edge[3].dest = 3;
		graph.edge[3].weight = 15;

		// add edge 2-3
		graph.edge[4].src = 2;
		graph.edge[4].dest = 3;
		graph.edge[4].weight = 4;

		// Function call
		graph.KruskalMST();
	}
}

The output:

Following are the edges in the constructed MST

2 — 3 == 4

0 — 3 == 5

0 — 1 == 10

Minimum Cost Spanning Tree: 19

In Python

# Python program for Kruskal's algorithm to find
# Minimum Spanning Tree of a given connected,
# undirected and weighted graph

from collections import defaultdict

# Class to represent a graph


class Graph:

	def __init__(self, vertices):
		self.V = vertices # No. of vertices
		self.graph = [] # default dictionary
		# to store graph

	# function to add an edge to graph
	def addEdge(self, u, v, w):
		self.graph.append([u, v, w])

	# A utility function to find set of an element i
	# (uses path compression technique)
	def find(self, parent, i):
		if parent[i] == i:
			return i
		return self.find(parent, parent[i])

	# A function that does union of two sets of x and y
	# (uses union by rank)
	def union(self, parent, rank, x, y):
		xroot = self.find(parent, x)
		yroot = self.find(parent, y)

		# Attach smaller rank tree under root of
		# high rank tree (Union by Rank)
		if rank[xroot] < rank[yroot]:
			parent[xroot] = yroot
		elif rank[xroot] > rank[yroot]:
			parent[yroot] = xroot

		# If ranks are same, then make one as root
		# and increment its rank by one
		else:
			parent[yroot] = xroot
			rank[xroot] += 1

	# The main function to construct MST using Kruskal's
		# algorithm
	def KruskalMST(self):

		result = [] # This will store the resultant MST
		
		# An index variable, used for sorted edges
		i = 0
		
		# An index variable, used for result[]
		e = 0

		# Step 1: Sort all the edges in
		# non-decreasing order of their
		# weight. If we are not allowed to change the
		# given graph, we can create a copy of graph
		self.graph = sorted(self.graph,
							key=lambda item: item[2])

		parent = []
		rank = []

		# Create V subsets with single elements
		for node in range(self.V):
			parent.append(node)
			rank.append(0)

		# Number of edges to be taken is equal to V-1
		while e < self.V - 1:

			# Step 2: Pick the smallest edge and increment
			# the index for next iteration
			u, v, w = self.graph[i]
			i = i + 1
			x = self.find(parent, u)
			y = self.find(parent, v)

			# If including this edge doesn't
			# cause cycle, include it in result
			# and increment the indexof result
			# for next edge
			if x != y:
				e = e + 1
				result.append([u, v, w])
				self.union(parent, rank, x, y)
			# Else discard the edge

		minimumCost = 0
		print ("Edges in the constructed MST")
		for u, v, weight in result:
			minimumCost += weight
			print("%d -- %d == %d" % (u, v, weight))
		print("Minimum Spanning Tree" , minimumCost)

# Driver code
g = Graph(4)
g.addEdge(0, 1, 10)
g.addEdge(0, 2, 6)
g.addEdge(0, 3, 5)
g.addEdge(1, 3, 15)
g.addEdge(2, 3, 4)

# Function call
g.KruskalMST()

The output:

Following are the edges in the constructed MST

2 — 3 == 4

0 — 3 == 5

0 — 1 == 10

Minimum Cost Spanning Tree: 19

Time Complexity

Time Complexity: O(ElogE) or O(ElogV). Sorting of edges takes O(ELogE) time. After sorting, we iterate through all edges and apply the find-union algorithm. The find and union operations can take at most O(LogV) time. So overall complexity is O(ELogE + ELogV) time.

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *