Kruskal Algorithm of Greedy Algorithm in C/C++/Java/Python
It is an Algorithm that is used to generate a minimum spanning tree for a given graph.A Spanning tree is a subset, connected graph G, and all the edges are connected in such a way that we can traverse to any edge from a particular edge with or without intermediates. So, if there are n vertices in a connected graph then the no. of edges that a spanning tree may have is n-1.
Kruskal’s algorithm sorts all the edges in increasing order of their edge weights and keeps adding nodes to the tree only if the chosen edge does not form any cycle.
- Step 1: Sort all edges in increasing order of their edge weights.
- Step 2: Pick the smallest edge.
- Step 3: Check if the new edge creates a cycle or loop in a spanning tree.
- Step 4: If it doesn’t form the cycle, then include that edge in MST. Otherwise, discard it.
- Step 5: Repeat from step 2 until it includes |V| – 1 edge in MST.
In C++
#include <bits/stdc++.h>
using namespace std;
// DSU data structure
// path compression + rank by union
class DSU {
int* parent;
int* rank;
public:
DSU(int n)
{
parent = new int[n];
rank = new int[n];
for (int i = 0; i < n; i++) {
parent[i] = -1;
rank[i] = 1;
}
}
// Find function
int find(int i)
{
if (parent[i] == -1)
return i;
return parent[i] = find(parent[i]);
}
// union function
void unite(int x, int y)
{
int s1 = find(x);
int s2 = find(y);
if (s1 != s2) {
if (rank[s1] < rank[s2]) {
parent[s1] = s2;
rank[s2] += rank[s1];
}
else {
parent[s2] = s1;
rank[s1] += rank[s2];
}
}
}
};
class Graph {
vector<vector<int> > edgelist;
int V;
public:
Graph(int V) { this->V = V; }
void addEdge(int x, int y, int w)
{
edgelist.push_back({ w, x, y });
}
void kruskals_mst()
{
// 1. Sort all edges
sort(edgelist.begin(), edgelist.end());
// Initialize the DSU
DSU s(V);
int ans = 0;
cout << "Following are the edges in the "
"constructed MST"
<< endl;
for (auto edge : edgelist) {
int w = edge[0];
int x = edge[1];
int y = edge[2];
// take that edge in MST if it does form a cycle
if (s.find(x) != s.find(y)) {
s.unite(x, y);
ans += w;
cout << x << " -- " << y << " == " << w
<< endl;
}
}
cout << "Minimum Cost Spanning Tree: " << ans;
}
};
int main()
{
/* Let us create following weighted graph
10
0--------1
| \ |
6| 5\ |15
| \ |
2--------3
4 */
Graph g(4);
g.addEdge(0, 1, 10);
g.addEdge(1, 3, 15);
g.addEdge(2, 3, 4);
g.addEdge(2, 0, 6);
g.addEdge(0, 3, 5);
// int n, m;
// cin >> n >> m;
// Graph g(n);
// for (int i = 0; i < m; i++)
// {
// int x, y, w;
// cin >> x >> y >> w;
// g.addEdge(x, y, w);
// }
g.kruskals_mst();
return 0;
}
The output:
Following are the edges in the constructed MST
2 — 3 == 4
0 — 3 == 5
0 — 1 == 10
Minimum Cost Spanning Tree: 19
LeetCode vs HackerRank vs HackerEarth
In C
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
//structure that denotes a weighted edge
struct Edge {
int source, destination, weight;
};
//structure that denotes a weighted, undirected and connected graph
struct Graph {
int Node, E;
struct Edge* edge;
};
//allocates memory for storing graph with V vertices and E edges
struct Graph* GenerateGraph(int Node, int E)
{
struct Graph* graph = (struct Graph*)(malloc(sizeof(struct Graph)));
graph->Node = Node;
graph->E = E;
graph->edge = (struct Edge*)malloc(sizeof( struct Edge));
return graph;
}
//subset for Union-Find
struct tree_maintainance_set {
int parent;
int rank;
};
//finds the set of chosen element i using path compression
int find_DisjointSet(struct tree_maintainance_set subsets[], int i)
{
//find root and make root as parent of i
if (subsets[i].parent != i)
subsets[i].parent
= find_DisjointSet(subsets, subsets[i].parent);
return subsets[i].parent;
}
//Creates the Union of two sets
void Union_DisjointSet(struct tree_maintainance_set subsets[], int x, int y)
{
int xroot = find_DisjointSet(subsets, x);
int yroot = find_DisjointSet(subsets, y);
//connecting tree with lowest rank to the tree with highest rank
if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;
//if ranks are same, arbitrarily increase the rank of one node
else
{
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}
//function to compare edges using qsort() in C programming
int myComp(const void* a, const void* b)
{
struct Edge* a1 = (struct Edge*)a;
struct Edge* b1 = (struct Edge*)b;
return a1->weight > b1->weight;
}
//function to construct MST using Kruskal’s approach
void KruskalMST(struct Graph* graph)
{
int Node = graph->Node;
struct Edge
result[Node];
int e = 0;
int i = 0;
//sorting all edges
qsort(graph->edge, graph->E, sizeof(graph->edge[0]),
myComp);
//memory allocation for V subsets
struct tree_maintainance_set* subsets
= (struct tree_maintainance_set*)malloc(Node * sizeof(struct tree_maintainance_set));
//V subsets containing only one element
for (int v = 0; v < Node; ++v) {
subsets[v].parent = v;
subsets[v].rank = 0;
}
//Edge traversal limit: V-1
while (e < Node - 1 && i < graph->E) {
struct Edge next_edge = graph->edge[i++];
int x = find_DisjointSet(subsets, next_edge.source);
int y = find_DisjointSet(subsets, next_edge.destination);
if (x != y) {
result[e++] = next_edge;
Union_DisjointSet(subsets, x, y);
}
}
//printing MST
Printf
(
"Edges created in MST are as below: \n");
}
int main()
{
int Node = 4;
int E = 6;
struct Graph* graph = GenerateGraph(Node, E);
//Creating graph with manual value insertion
// add edge 0-1
graph->edge[0].source = 0;
graph->edge[0].destination = 1;
graph->edge[0].weight = 2;
}
// add edge 0-2
graph->edge[1].source = 0;
graph->edge[1].destination = 2;
graph->edge[1].weight = 4;
// add edge 0-3
graph->edge[2].source = 0;
graph->edge[2].destination = 3;
graph->edge[2].weight = 4;
// add edge 1-3
graph->edge[3].source = 1;
graph->edge[3].destination = 3;
graph->edge[3].weight = 3;
// add edge 2-3
graph->edge[4].source = 2;
graph->edge[4].destination = 3;
graph->edge[4].weight = 1;
// add edge 1-2
graph->edge[5].source = 1;
graph->edge[5].destination = 2;
graph->edge[5].weight = 2;
KruskalMST(graph);
return 0;
}
The output:
2 ->> 3 ==1
0 ->> 1 ==2
2 ->> 1==2
In Java
// Java program for Kruskal's algorithm to
// find Minimum Spanning Tree of a given
//connected, undirected and weighted graph
import java.util.*;
import java.lang.*;
import java.io.*;
class Graph {
// A class to represent a graph edge
class Edge implements Comparable<Edge>
{
int src, dest, weight;
// Comparator function used for
// sorting edgesbased on their weight
public int compareTo(Edge compareEdge)
{
return this.weight - compareEdge.weight;
}
};
// A class to represent a subset for
// union-find
class subset
{
int parent, rank;
};
int V, E; // V-> no. of vertices & E->no.of edges
Edge edge[]; // collection of all edges
// Creates a graph with V vertices and E edges
Graph(int v, int e)
{
V = v;
E = e;
edge = new Edge[E];
for (int i = 0; i < e; ++i)
edge[i] = new Edge();
}
// A utility function to find set of an
// element i (uses path compression technique)
int find(subset subsets[], int i)
{
// find root and make root as parent of i
// (path compression)
if (subsets[i].parent != i)
subsets[i].parent
= find(subsets, subsets[i].parent);
return subsets[i].parent;
}
// A function that does union of two sets
// of x and y (uses union by rank)
void Union(subset subsets[], int x, int y)
{
int xroot = find(subsets, x);
int yroot = find(subsets, y);
// Attach smaller rank tree under root
// of high rank tree (Union by Rank)
if (subsets[xroot].rank
< subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank
> subsets[yroot].rank)
subsets[yroot].parent = xroot;
// If ranks are same, then make one as
// root and increment its rank by one
else {
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}
// The main function to construct MST using Kruskal's
// algorithm
void KruskalMST()
{
// This will store the resultant MST
Edge result[] = new Edge[V];
// An index variable, used for result[]
int e = 0;
// An index variable, used for sorted edges
int i = 0;
for (i = 0; i < V; ++i)
result[i] = new Edge();
// Step 1: Sort all the edges in non-decreasing
// order of their weight. If we are not allowed to
// change the given graph, we can create a copy of
// array of edges
Arrays.sort(edge);
// Allocate memory for creating V subsets
subset subsets[] = new subset[V];
for (i = 0; i < V; ++i)
subsets[i] = new subset();
// Create V subsets with single elements
for (int v = 0; v < V; ++v)
{
subsets[v].parent = v;
subsets[v].rank = 0;
}
i = 0; // Index used to pick next edge
// Number of edges to be taken is equal to V-1
while (e < V - 1)
{
// Step 2: Pick the smallest edge. And increment
// the index for next iteration
Edge next_edge = edge[i++];
int x = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest);
// If including this edge doesn't cause cycle,
// include it in result and increment the index
// of result for next edge
if (x != y) {
result[e++] = next_edge;
Union(subsets, x, y);
}
// Else discard the next_edge
}
// print the contents of result[] to display
// the built MST
System.out.println("Following are the edges in "
+ "the constructed MST");
int minimumCost = 0;
for (i = 0; i < e; ++i)
{
System.out.println(result[i].src + " -- "
+ result[i].dest
+ " == " + result[i].weight);
minimumCost += result[i].weight;
}
System.out.println("Minimum Cost Spanning Tree "
+ minimumCost);
}
// Driver Code
public static void main(String[] args)
{
/* Let us create following weighted graph
10
0--------1
| \ |
6| 5\ |15
| \ |
2--------3
4 */
int V = 4; // Number of vertices in graph
int E = 5; // Number of edges in graph
Graph graph = new Graph(V, E);
// add edge 0-1
graph.edge[0].src = 0;
graph.edge[0].dest = 1;
graph.edge[0].weight = 10;
// add edge 0-2
graph.edge[1].src = 0;
graph.edge[1].dest = 2;
graph.edge[1].weight = 6;
// add edge 0-3
graph.edge[2].src = 0;
graph.edge[2].dest = 3;
graph.edge[2].weight = 5;
// add edge 1-3
graph.edge[3].src = 1;
graph.edge[3].dest = 3;
graph.edge[3].weight = 15;
// add edge 2-3
graph.edge[4].src = 2;
graph.edge[4].dest = 3;
graph.edge[4].weight = 4;
// Function call
graph.KruskalMST();
}
}
The output:
Following are the edges in the constructed MST
2 — 3 == 4
0 — 3 == 5
0 — 1 == 10
Minimum Cost Spanning Tree: 19
In Python
# Python program for Kruskal's algorithm to find
# Minimum Spanning Tree of a given connected,
# undirected and weighted graph
from collections import defaultdict
# Class to represent a graph
class Graph:
def __init__(self, vertices):
self.V = vertices # No. of vertices
self.graph = [] # default dictionary
# to store graph
# function to add an edge to graph
def addEdge(self, u, v, w):
self.graph.append([u, v, w])
# A utility function to find set of an element i
# (uses path compression technique)
def find(self, parent, i):
if parent[i] == i:
return i
return self.find(parent, parent[i])
# A function that does union of two sets of x and y
# (uses union by rank)
def union(self, parent, rank, x, y):
xroot = self.find(parent, x)
yroot = self.find(parent, y)
# Attach smaller rank tree under root of
# high rank tree (Union by Rank)
if rank[xroot] < rank[yroot]:
parent[xroot] = yroot
elif rank[xroot] > rank[yroot]:
parent[yroot] = xroot
# If ranks are same, then make one as root
# and increment its rank by one
else:
parent[yroot] = xroot
rank[xroot] += 1
# The main function to construct MST using Kruskal's
# algorithm
def KruskalMST(self):
result = [] # This will store the resultant MST
# An index variable, used for sorted edges
i = 0
# An index variable, used for result[]
e = 0
# Step 1: Sort all the edges in
# non-decreasing order of their
# weight. If we are not allowed to change the
# given graph, we can create a copy of graph
self.graph = sorted(self.graph,
key=lambda item: item[2])
parent = []
rank = []
# Create V subsets with single elements
for node in range(self.V):
parent.append(node)
rank.append(0)
# Number of edges to be taken is equal to V-1
while e < self.V - 1:
# Step 2: Pick the smallest edge and increment
# the index for next iteration
u, v, w = self.graph[i]
i = i + 1
x = self.find(parent, u)
y = self.find(parent, v)
# If including this edge doesn't
# cause cycle, include it in result
# and increment the indexof result
# for next edge
if x != y:
e = e + 1
result.append([u, v, w])
self.union(parent, rank, x, y)
# Else discard the edge
minimumCost = 0
print ("Edges in the constructed MST")
for u, v, weight in result:
minimumCost += weight
print("%d -- %d == %d" % (u, v, weight))
print("Minimum Spanning Tree" , minimumCost)
# Driver code
g = Graph(4)
g.addEdge(0, 1, 10)
g.addEdge(0, 2, 6)
g.addEdge(0, 3, 5)
g.addEdge(1, 3, 15)
g.addEdge(2, 3, 4)
# Function call
g.KruskalMST()
The output:
Following are the edges in the constructed MST
2 — 3 == 4
0 — 3 == 5
0 — 1 == 10
Minimum Cost Spanning Tree: 19
Time Complexity
Time Complexity: O(ElogE) or O(ElogV). Sorting of edges takes O(ELogE) time. After sorting, we iterate through all edges and apply the find-union algorithm. The find and union operations can take at most O(LogV) time. So overall complexity is O(ELogE + ELogV) time.